Affine solution sets of sparse polynomial systems
نویسندگان
چکیده
This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polynomial systems. For generic systems with fixed supports, we give combinatorial conditions for the existence of positive dimensional components which characterize the equidimensional decomposition of the associated affine variety. This result is applied to design an equidimensional decomposition algorithm for generic sparse systems. For arbitrary sparse systems of n polynomials in n variables with fixed supports, we obtain an upper bound for the degree of the affine variety defined and we present an algorithm which computes finite sets of points representing its equidimensional components.
منابع مشابه
A Polyhedral Method to Compute All Affine Solution Sets of Sparse Polynomial Systems
To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. We present a polyhedral method to compute ...
متن کاملComputing all Affine Solution Sets of Binomial Systems
To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. For the problem of computing solution sets...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملA Family of Sparse Polynomial Systems Arising in Chemical Reaction Systems
The positive steady states of chemical reaction systems modeled by mass action kinetics are investigated. This sparse polynomial system is given by a weighted directed graph and a weighted bipartite graph. In this application the number of real positive solutions within certain affine subspaces of R is of particular interest. We show that the simplest cases are equivalent to binomial systems an...
متن کاملResolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method
The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 51 شماره
صفحات -
تاریخ انتشار 2013